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It THE DEFORMATION OF AN IMPULSIVELY
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This paper continues the investigation of large amplitude waves in bounded media
started by Cekirge & Varley (1973). It describes the early stages of the deformation pro-
duced in an elastic slab contained between two parallel, plane interfaces when the nor-
mal traction at one of them changes discontinuously. During the subsequent deforma-
tion energy is radiated across these interfaces to adjacent elastic materials., Typically,
the disturbance in the slab could be caused by the arrival of a constant strength shock
wave travelling through an adjacent material or when the slab, which forms the front
part of a composite material, impacts some other elastic material.

It is assumed that the dynamic response of the slab can be approximated by that of
one of the model materials introduced in the first part of this study. It is shown that
this is possible for a whole host of materials. These include polycrystalline solids,
metals when subjected to high pressure, water, explosive products, gases, yarns as well as
elastic—plastic, rigid-plastic and rigid—elastic materials. The results reported are
obtained by showing that for these model materials a simple, but exact, representation
can be found that describes the interaction of a centred wave with any wave travelling
in the opposite direction. The arbitrary functions occurring in this representation are
then found for the special case when this opposite travelling wave is the wave reflected
from an interface with some other elastic material during the arrival of the centred
wave. The limiting cases of a perfectly free interface, a perfectly rigid interface,
and an interface with a Hookean material are analysed in great detail.

Although the terminology used in this paper is that associated with nonlinear
elastodynamics, the results are directly applicable to any system whose response is de-
scribed by the nonlinear wave equation. For example, the slab could represent a

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

:é layer of nonlinear dielectric embedded in some other nonlinear dielectric and the dis-
S P turbance could be generated by the arrival of an electromagnetic shock. Alternatively,
O the slab could represent sea water which is bounded by air from above and by rock from
= E below while the disturbance is produced by a sudden motion of the water/rock interface.
= O

O

=wu 1. INTRODUCTION

This paper is part II of a study of large amplitude waves in bounded media. Part I,
an earlier paper by Cekirge & Varley (1973), studied the deformation that is produced when
a large amplitude, but shockless, pulse travelling through an elastic material arrives at an
interface with another elastic material. The pulse propagates in a direction normal to the
interface. First, the ideas of nonlinear impedance, reflexion coefficient and transmission
coefficient for such an interface were introduced. These were then used to determine the

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. II 193

amplitudes of the reflected and transmitted pulses in terms of that of the incident pulse. The
algorithms obtained were quite general: no restriction was placed on the stress—strain relations
of the materials separated by the interface. As an illustration of the use of these algorithms, the
decay in the amplitude of a pulse was calculated as it bounces back and forth in a slab, or layer,
contained between two other elastic materials. At each contact with an interface part of the energy
of the pulse is transmitted into the surrounding material and part is reflected. Of course, the
information that can be obtained by using these general results is rather limited (although, in
practice, it may be sufficient). In fact, just a detailed calculation of the deformation produced
at an interface during the arrival of a single pulse is difficult since it involves the nonlinear inter-
action of the incident and reflected pulses. Usually, this problem can only be tackled by using
numerical procedures. However, in part I it was shown that when the material through which
the incident wave travels belongs to a certain family of model materials the deformation at the
interface during the arrival of any pulse can easily be analysed. The elastic material which is
separated by the interface from the model material may be quite arbitrary.

The model materials are defined by the fact that 4, the Lagrangian sound speed, varies with

the strain ¢ according to the law dAjde = uAb(1—A[M), (1.1)

where x and M are material constants. Some of the different kinds of material responses that
can be modelled by such relations are catalogued in part I. They range from elastic—plastic
to elastic-locking materials. Here, in § 2 of this paper, we extend this list and show how to choose
the parameters g and M, together with the constants of integration for equation (1.1), so that the
corresponding stress—strain relations best approximate the stress—strain relations of a wide
variety of real materials (see tables 1-3). These include polycrystalline solids, yarns and silks,
metals when subjected to pressures of up to ca. 101°Pa (105atm), explosive products, water,
and many gases. With the exception of gases, the curve fit provided by the model materials is
as good a fit to the experimental data as any we can find in the literature. For gases the relative
error in the approximation to A4(e) is less than 2 9, as the density changes by a factor of ten.

In all of the deformations studied in this paper the reference state R, from which the strain ¢
and the traction 7" are measured, is that in which 4 is a maximum, = 4, say. Since 42cc d T7de,
this means that in all deformations the material softens relative to its state R. (For gases, R is the
state of maximum pressure and density.) This reference state need not, however, be an equili-
brium state of the material. Sometimes it is the state induced by the passage of a constant strength
shock.

There are two distinct classes of model materials that soften relative to R. We call these non-
ideal and ideal soft materials. If 4 is measured in units of 4, so that 4 < 1 for the deformations
studied here, M lies in the range [0, 1] for non-ideal materials and outside this range for ideal
materials. For the former ue > 0 and, as pe-—>co, 4 > M: for the latter we < 0 and, as
pe—>—0o0, 4 - 0. In §2 it is shown that the behaviour of many polycrystalline materials during
uniaxial compression can be modelled by those of non-ideal materials. On the other hand, the
behaviour of gases, explosive products, water and metals when subjected to high pressure can
be modelled by ideal materials. For gases M lies in the range (—oo, 0); for metals, water, and
explosive products A lies in the range (1,00). For all these materials the approximations are
only valid when ue varies over a finite range.

In addition to the materials listed in tables 1-3, four other highly idealized responses which
can be obtained as limiting cases of equation (1.1) are also discussed in §2. Two of these were

24-2
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194 J. Y. KAZAKIA AND E. VARLEY

pointed out in part I. These were the simple linear Hookean response, which is obtained as
M — 1 from values < 1 while s is held constant, and the linear elastic—perfectly plastic response,
which is obtained as M — 1 from values > 1 while p/ln (M — 1) is held constant. For example,
in the latter limit the dominant variation of 4 with 7'is expressed by the formula

A = tanh?[y,(1-T[T1)] as ny=—%In(M—1)—> o0, (1.2)

where 7} is the limiting stress of the material. The other two limiting responses introduced in
this paper are obtained as M — 0. As M — 0 from values > 0 while x/M is held constant the per-
fectly rigid—perfectly elastic response is obtained (see figure 3). As M — 0 from values < 0 while
/¢ is held constant the perfectly rigid—perfectly plastic response is obtained (see figure 3). These
limiting responses can be used to approximate the behaviour of yarns and strings in tension as
well as the behaviour of concrete in compression.

One of the limitations of the model materials discussed here is that they can only be used to
approximate the response of materials over ranges where A is either a monotonically increasing
or a monotonically decreasing function of e. They cannot be used to approximate any stress—strain
relation that contains a point of inflexion. Such a stress—strain relation can occur, for example,
when a cylinder of polycrystalline material is compressed by an axial load. Initially the load is
mainly balanced by the material’s resistance to shear: over this range the material softens for the
applied load. However, when the load is sufficiently large it is mainly balanced by the material’s
resistance to compression: over this range the material hardens. Consequently, any stress—strain
relation that is uniformly valid in compression contains a point of inflexion. Recently, we have
been able to generalize the class of model materials for which the governing equations can be
integrated so that the effect of a point of inflexion can be analysed for some deformations of
practical importance. However, the representations of these deformations are so complex
compared with those that are obtained when equation (1.1) holds that we do not discuss them
here.

After establishing the fact that the model materials are of some physical relevance, in the
remainder of the paper we analyse the deformation produced in a slab of such a material when
a centred wave travelling through the slab is reflected from an interface with some other elastic
material. Various situations in which this problem occurs are described in §3. One example is
the initial stage of the deformation produced in a slab when a constant strength shock wave
travelling through an adjacent material arrives at their common interface. During the subsequent
deformation energy is radiated across the other boundary of the slab to some other adjacent
material. The slab could be a panel surrounded on both sides by air, or it could be an element
of some composite material. Alternatively, the slab could be sea water which is bounded by air
from above and by rock from below. The disturbance in the water is produced by the arrival of a
constant strength shock wave travelling through the rock. Another example of a deformation
that involves the reflexion of a centred wave from an interface occurs when a ‘hitter’ bar, or
plate, which is a composite of two materials impacts some other elastic material. A much simpler,
but more idealized, example is the deformation produced in a bar, or string, when one of its ends
is suddenly loaded by a traction, or tension, which is then held constant for some time while the
other end is held fixed.

The main result of this paper is obtained in §4. There, a simple representation (see equations
(4.8) and (4.9)) is obtained that describes the deformation produced when a centred wave inter-
acts with any other wave travelling in the opposite direction. In the remainder of the paper we
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calculate the arbitrary functions occurring in this representation, and analyse the corresponding
deformations, in the special case when the opposite travelling wave is that reflected from an inter-
face with some other elastic material during the arrival of the centred wave. Before the arrival
of the incident centred wave the material is in the uniform reference state R. During its passage
the material softens.

As a first illustration of the use of the representation obtained in §4, in §2 we consider the
limiting case when the interface is perfectly free. The main effect of the wave that is reflected
from such an interface is to harden, or unload, the material. This causes one of two things to
happen: the material either stops behaving elastically or the reflected wave focuses to form a
shock. The results obtained in § 6 are only valid for materials that continue to behave elastically
on unloading and then only up until the time when a shock forms. (Inelastic behaviour and the
effect of shocks will be considered in subsequent papers.) With these limitations in mind, in the
interaction region a simple representation is obtained for 4 as an explict function of the Lagran-
gian distance measure X, time measure ¢ and the material parameter M (see equation (6.9)).
The behaviour of a whole range of different materials is obtained by simply letting A take on
different values. The only time the other material parameters enter is when 7, ¢ and the material
velocity u are calculated. The details of the deformation are calculated and summarized by
graphs in the limiting cases when the material response is Hookean, elastic—plastic, rigid—plastic,
and rigid—elastic.

The reflexion from a rigid interface is described in §7. Now the effect of the reflected wave is
to further soften the material so that no shocks form and no unloading occurs. In the interaction
region 4 can be expressed as the ratio of two quadratic forms in X and ¢ with coeflicients that
depend on M. The corresponding deformations are analysed in detail. In particular, the strength
of the incident wave that causes the material to yield at the rigid interface is calculated.

In many situations the interface from which the centred wave is reflected separates the slab
from some other elastic material whose response is essentially linear for the stress level that occurs
at the interface, although that of the slab is grossly nonlinear. In § 8 we describe the deformation
produced in the slab during the reflexion of a centred wave from such an interface. Now, in
addition to the material parameter M, 4 depends on ¢,, the impedance of the interface when the
material is in the reference state R. Except when i, = 0, which corresponds to a perfectly free
interface, the material always softens at the interface. This causes the reflected wave to defocus.
However, when the material is ideally soft and when 7, < 1 the material may begin to harden
away from the interface and, if the material continues to behave elastically, the reflected wave
may focus to form a shock. Hardening and shock formation always occur first at the front of the
reflected wave. Several important features of the deformation are analysed, including the strength
of the incident centred wave, which now depends on ¢, as well as A, that causes the material to
yield.

Finally, in § 9, we show how to calculate the functions that occur in the representation obtained
in §4 when the interface separates the slab from any other elastic material. After crossing the
interaction region the reflected wave emerges as a simple wave. The procedure that must be
used to calculate the deformation during its passage is described.
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196 J. Y. KAZAKIA AND E. VARLEY

2. THE GOVERNING EQUATIONS

In this section we list those relations which were established in part I of this paper that will
be needed here.

Characteristic variables (o, #) are used as independent variables. Then, the equations govern-
ing uni-axial isentropic, stretching waves in an elastic material imply that the Lagrangian dis-
tance measure X («, ) and the time measure #(«, #) satisfy the equations

0X[of = Ao and aX[oa = —Adtfoa. (2.1)

In these equations, 4, the Lagrangian sound speed, is regarded as a function, 4(c), of a variable ¢
that can be expressed in terms of the signal functions /() and G(f) as

¢c=F(a)+G(p). (2.2)
The function 4(¢c) determines the dynamic response of the material: in terms of it
. ¢ A . ¢ ds
the traction T = p, f A(s)ds and the strain ¢ =f —_— (2.3)
0 0 A(s)

where p, is the constant density of the material when ¢ = 0. In terms of /' and G,
the material velocity u = G(f)—F(«). (2.4)
For the materials studied here, 4 and ¢ are related by the equation
d4/dc = pA?+vA, (2.5)

where # and v are material constants. There are two reasons for choosing equations of state
for which A(c) satisfies equation (2.5). First, the hodograph equation for ¢, which is obtained by
eliminating X from equations (2.1), can be integrated. Second, these model stress—strain rela-
tions can be used to approximate the actual stress—strain relations of a wide variety of real
materials with quite remarkable accuracy.

2.1. Integration of the hodograph equations

Throughout this paper the elastic material will be bounded by the material planes X = 0 and
X = D. Then, as was shown in part I, it follows from equations (2.1), (2.2) and (2.5) that

243 0tf0o +[p(t— o) + VX F'(a) = m(a), (2.6)

and that 24301[0f +[p(t—B) +v(D— X)) G'(B) = n(p). (2.7)
In these equations, the characteristic variables (e, #) have been normalized so that

when X =0, a-=1, (2.8)

while when X=D, f=t. (2.9)

Also, m(f) =A% at X=0 while n(t) =4t at X=D. (2.10)

This indentification follows from equations (2.6)—(2.9) and the facts [I, (7.13)] that at any

particle X
D¢/Da = 20t/ and Di/Dp = 20t[0p. (2.11)

Once the functions F, G, m and » have been calculated from prescribed initial and boundary
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data, the relations (2.1), (2.6) and (2.7) can be used to determine X(a, #) and #(«, §). Before
the general procedure for doing this is described though, we first show how these relations
can be used to calculate some comparatively simple deformations that involve wave interactions.

2.2, Stress—strain relations for ideally soft materials
For most of the deformations studied in this paper the material is in a uniform state, R, at
t=0,wherec=¢=T = 0and 4 = 4,. Subsequently,
for t>0, 4<A4, (2.12)

so that the material soffens relative to its state at ¢ = 0. However, because in some of the deforma-
tions the state R is induced by the passage of a constant strength shock, « is not necessarily zero
atf=0.

T
T T
Ti i /I’,/
7
E°°I
/
/
E,
e e
Ficure 1 Ficure 2

Ficure 1. A typical stress—strain relation for an ideally soft elastic material. The sound speed 4 decreases mono-
tonically with either increasing or decreasing ¢ from 4, = 4/(E,fp,) ate = 0 to zero. The values of E,, the
limiting stress T3, and the value of ¢ at which T' = 0.99 T} can be specified.

Ficure 2. A typical stress—strain relation for a soft material. The sound speed A decreases monotonically with
either increasing or decreasing ¢ from Ay = 4/(Eofp,) at ¢ = 0 to some limiting value A, = /(E[p,)-
The values of E,, E_ and T; can be specified.

According to equations (2.3) and (2.5), materials that soften are of two distinct types: ideal or
non-ideal. A typical stress—strain relation for an ideally soft elastic material is shown in figure 1.
If, for example, the material softens as ¢ increases, as it does for a gas, 4 decreases monotonically
from 4, to zero as ¢ increases from zero to infinity. The material parameters (x, v) can be chosen
so that both 7i, the limiting value of 7" as 4 = 0, and ¢, the value of ¢ at which 7" = 0.997],
can be specified.

There are two families of solutions to equation (2.5) that describe ideally soft materials. For
the first family

AlAy = Mtanh?[yy+9.(c[4,)], (2.13)
where pdd =2 MY, vA} =—29, M-} and 1< M<o. (2.14)
For the second family A4y = — Mtan2[0y+ 0,(c[A,)], (2.15)
where udl = 20,| M|}, vA} = 20,|M|* and —oco< M<O. (2.16)

In practice, of course, the parameters in the expressions (2.13) and (2.15) can only be chosen
so that these expressions approximate the actual variation of 4 with ¢ in a real material over part
of the range (4,, 0). For example, table 1 shows how to choose the parameters M, 7, and #, in
equation (2.13) to curve fit the responses of many metals in the hydrodynamic range as the
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198 J. Y. KAZAKIA AND E. VARLEY

pressure varies from a value which is large compared with the yield stress to a value of the order
of 109Pa (10%atm). Over this range the experimental pressure-density relation (pgz—py
relationt) is often (Al'tshuler 1965) approximated by the law

et ]

where the constant exponent 7y lies somewhere in the range 4 <y < 5. In equation (2.17),
without loss of generality, p, and p, denote the maximum pressure and density that occur in the
deformation. Equation (2.17) is also used (Cole 1948) to describe the dynamic response of water
over a pressure range of 10° Pa (10*atm): then 7 < y < 8. Also, equation (2.17), with y ~ 3, is
often used (Baum 1959) to describe the responses of dense gases, such as explosive products. In

terms of
erms 0 Ty =po—pr and eg = pofpn—1, (2.18)

equation (2.17) can be written -
2 N
Ty =B‘:749[1—(1+em)—7]. (2.19)

This corresponds to Apldy = [1—=3(y—1) (c/4,)] v+DIr=D, (2.20)

TasBLE 1. THE VALUES OF M, 9y AND %;, AND THE CORRESPONDING VALUES OF (/, V), FOR WHICH
THE THEORETICAL LAW A[A, = M tanh® [y +%,(¢/4,)] BEST FITS THE EXPERIMENTAL LAW
Apfdy = [1=%(y—1) (¢/4,) ] DI~ OVER THE DENSITY RANGE (0/P¢)min < P[P0 < 1. THE
RELATIVE ERROR OVER THIS RANGE IS LESS THAN 2 9,

material
s A A
explosion metals water
products - A N p A N
parameters Yy =3 Yy = Y = y = Y=

M +c0 4.6316 3.0362 2.4855 2.1768
7o 0 0.5004 0.6408 0.7423 0.8146
T 0 —0.7009 ~1.1726 —1.9197 —2.4536
‘uA% -2 —3.0168 —4.0864 —6.0530 —17.2401
vA} 0 0.6514 1.3459 2.4353 3.3260
(plpo)min 0 % % %' ':]3"

Table 1 displays the values of M, 5,and #,, wheny = 3, 4, 5, 7, 8, for which 4(¢), given by equa-
tion (2.13), approximates Ay(c), given by equation (2.20), over a specified range of p/p,. When

v = 3,4(c) = Ag(c) because AJd, = (1—c[d)? (y = 3) (2.21)
is an exact solution of equation (2.5) with
p=—245% and »=0. (2.22)
The expression (2.21) is obtained from (2.13) in the limit as
(Moym) >0, M—>00, 5,Mt—>1 and 9, M} —>-1. (2.23)

For y = (4, 5) the relative error in approximating Ay by 4 over the range ¥ < p/p, < 1 is less
than 2 9%, For y = (7, 8), over the range } < p/p, < 1, it is also less than 2 9%,. Both these ranges

1 The subscript E denotes the exact or the experimental value.
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cover the ranges over which the expression (2.20) itself provides an adequate approximation.
Over these ranges, A(c) is just as good an approximation as 4y(c) to the experimental data.

Other material behaviours that can be modelled by the equations of state (2.13) are discussed
in part I of this paper. Here, for future reference, we summarize what happens when

M1, go->00 and u,/9,—> —poA3/T. (2.24)

In this limit, according to equations (2.13) and (2.24), the dominant behaviour is described by

the equations A4, = tanh? [n,(1 — TJT7)]/tanh7,, (2.25)
Pody I_ pody _7: —1 ( [1 _Z])

where T 6= and T e=7 + 75 Lcoth {7, 7| (2.26)

As 7, — o0, equations (2.25) and (2.26) predict that the prefectly elastic—perfectly plastic re-
sponse is obtained:

0< 1,
A—>{A° for 0< T|Ti< } (2.27)

0 for T/Ti=1.

TABLE 2. THE VALUES OF M, 0, AND 0;, AND THE CORRESPONDING VALUES OF (4, ), FOR WHICH
THE THEORETICAL LAW A[d, = M tan? [0y + 0; (¢c/4,)] BEST FITS THE EXPERIMENTAL LAW
Agldy = [1=%(y—1) (¢[4,)]o+1~D OVER THE DENSITY RANGE (0/Po)min < P[P0 < 1. THE
RELATIVE ERROR OVER THIS RANGE IS LESS THAN 2 9,

gases
r A Y

parameters y=1 vy =14 y=3 v =2 y=3

M —0.4143 —0.6479 —0.8081 —0.5300 -0

0, 0.9989 0.8928 0.8420 0.6814 0

0, —0.2409 —0.3248 —0.3813 —0.3985 0

uAd —0.3101 —0.5221 —0.6856 —0.9858 -2

vA} —0.7484 —0.8006 —0.8484 —0.6443 0

(0100)min 0.1 0.1 0.1 0.1 0

It was shown in part I that the second family of ideally soft materials, for which 4 is given by
equation (2.15), can be used to approximate the responses of gases as the density changes by a
factor of ten. Over this range Ay (¢) is given by equation (2.20) withy lyingin therange 1 < y < 3.
For completeness, table 2 displays the values of M, 6, and 0, wheny = 1, %, §, 2 and 3 for which
A(c), given by equation (2.15), best approximates Ay(¢c). Again the maximum relative error is
about 2 %, Note that the case y = 3 is again obtained from the expression (2.15) as M — — co.

The second family ofideally soft materials can also be used to model the behaviour of materials
that are essentially rigid when 0 < 7/7; < 1 but which soften rapidly as 7> 7. This be-
haviour is obtained as

2 2 T
= - = - — % D ——
¢ = —cot Oy 7t( M)t -0, €4, ~>P001 (2.28)
1
and ety - _p_c;zlin’

where ¢1is an arbitrary reference velocity. In this limit, according to equations (2.15) and (2.3),
the dominant behaviour is described by the equations

2 —2
p—oc-lA = 6[e+7—ttan5] and
1

T =tani[tan¢+4me]™t where ¢ = irn(c/c). (2.29)

T

25 Vol. 277. A.
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i (2\3 tan¢ c 11 .
AISO, 15-(')'7120 = (;C) € [I_—i})‘:;———m 0], Where 0 L ¢ <L 27'5(1 6). (2.30)

The rigid response is described by equations (2.29) and (2.30) in a layer neighbouring ¢ = 0,
where ¢/c; = O(e). In this layer, if we write

cler = ey, (2.31)
equations (2.29) and (2.30) imply that
Polly _ ¢ o T
ﬂA e (149)72 (Y (2.32)
and _ﬂée = e[+ +37°]. (2.33)
Pol

According to equations (2.31)—(2.33) when ¢/ar = O(e), Ti/pycie = O(e*) while T/T] varies over
the full range (0, 1). Note that the expressions (2.31)—(2.33) satisfy equations (2.3) and (2.5)
with
-1
#=0 and »v= ——2(€@> . (2.34)
Po

Outside the layer where the relations (2.31)-(2.33) hold, where ¢ < ¢/c; < 1, as ¢/c; increases,
T[T = 1 but (Ti/pyc}) e increases in the range (0, 00) while (p,a/71) A decreases in the range (oo, 0).
Typical responses of ideally soft materials as M — 0 are depicted in figure 3.

2.3. Stress—strain relations for non-ideally soft materials

A typical stress—strain relation for a non-ideally soft material is depicted in figure 2. The sound
speed A decreases monotonically with either increasing or decreasing ¢ from 4, at ¢ = 0 to some
limiting value 4., < A4,. The parameters (%, v) can be chosen so that, in addition to 4,, 4, and
T} (the value of 7" at which the two limiting tangents intersect) take specified values. 7] is a
measure of the rate at which 4 varies with 7.

The variation of 4 with ¢ in a non-ideal material is described by the single relation

A[Ay = M coth?[y+9,(c/4,)], (2.35)

where pAS =29, M3, vA} = —2p, M} and O0< M <1 (2.36)
In equation (2.35), 9,(¢/4,) can vary in the range (0, c0) and

as  7y(c[dy) >0, A— 4, = MA,. (2.87)

The relation (2.35) can be used to describe the behaviour of many polycrystalline materials,
such as aluminium and copper, during uniaxial compression. The stress—strain relations of such
materials are usually fitted, with reasonable accuracy, by simple power laws over most of the
range of interest. If (Ty, ey) denote the maximum compressive stress and strain that occur during
the deformation, these laws can be written

T[Ty = (exles)™, (2.38)
where the exponent 7 lies somewhere in the range (0, 1). This corresponds to
AE/AM = ((;/CM) (n—l)/(n+1)’ (239)
Tu \? 2
wher = (1) o= 00
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TABLE 3. THE VALUES OF 7, %y AND M, TOGETHER WITH THE CORRESPONDING VALUES OF /i, V
AND Ay /4y, FOR WHICH THE A[4, = M coth? [5,+7, (¢/4,)] BEST FITS THE EXPERIMENTAL
LAW Ag[dy = (¢[ey)»DI+) ovER THE RANGE 0.1 < ¢/cyy < 1. THE RELATIVE ERROR IN
T|Ty; AND efey; 1 LESS THAN 1 9,

power

r A ~

parameters n=1 n=3 n==% n=%
M 1 0.3570 0.2081 0.1487
o © 0.6892 0.4925 0.4066
(culdo) 1, 0 1.2601 1.2831 1.2907
wl 4o 1 0.3802 0.2262 0.1633
Ay eylp -0 —1.5057 —1.1706 —0.9952
Ab|cy|v 0 4.2180 5.6258 6.6951

lf: —
I
i
T
002 0! e g
| ?4 poc% OI06
0 02 04 pAL, 06
I

Ficure 3. Typical stress—strain relations for rigid-elastic and rigid—plastic materials. The rigid—elastic response
is obtained as M - 0 from values > 0. For these materials both 77 and 4 can be specified. The rigid—plastic
response is obtained as M —> 0 from values < 0. For these materials T, and ¢, can be specified: ¢ is the velocity
with which the end of a bar will move when loaded by the limiting traction 7.

//
T/TM . /:j;/"//’?//
— T 574
.
0.5~/./ e e
e
/./ 7
/
1 L | | ]
0 0.2 0.4 06 eley 08 10

Ficure 4. Comparison of the power laws T[Ty = (egfey)” with the model stress—strain relations whenn = §, 4, }
(see table 3). The full curves denote the model stress-strain relations and the dots the power laws.

25-2
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Table 3 displays the values of M, 5, and #, for which the expression (2.35) ‘best’ approximates the
expression (2.39) over the range 0.1 < ¢/eyy < 1 when n = 1,4, 3, 1. The corresponding stress—
strain relations are compared in figure 4. The relative error over this range is less than 1 9%,. Of
course, the variation (2.35) cannot be used to approximate the singular behaviour described by
equation (2.39) as ¢/ey — 0. Equation (2.39) predicts that Ay/4dy — 00 as ¢/ey = 0 equation
(2.35) predicts that 4/A4y; takes the values 4,/4y; displayed in table 3. In spite of this, the model
stress—strain law provides an excellent fit to the law (2.38) over 97 9, of the range of variation of e.
In practice, of course, it is just as good a fit to the experimental data.

Some materials, such as yarns in tension, behave essentially rigid for 7" < 77 and as Hookean
materials for T" > T;. This response is described by equations (2.3) and (2.35) as

2
tanh?y, = M -0, MA,—~ A, and My, - p"g”. (2.41)

In this limit, the dominant behaviour is described by the equations

A P4 -2
—_— 3 -3 0% ©
i [M +tanh (M T c)] , (2.42)
T pPod -1 ped
= 3 —3 704" © 041
T [1 + Mz coth (M T c)] + T ¢ (2.43)
Pod% _ Pode _ . _1Pods \T7
and = (1-M) |1+ M-*coth (M3 )| - (2.44)
The almost rigid behaviour is obtained when
pods
T c=0(M).
. . Podew
Inthislayer, if e = My, (2.45)
b4
equations (2.42)—(2.44) predict that
Aw -1 -2 T,~77 p(,AEO_ 2 24 1p3
= M-t (1+7)72 T.=Ti7 and i M2 (g 492+ 19%). (2.46)

Accordingly, as T/7; varies in the range (0, 1), (p,4%[1;) ¢ = O(M?). The Hookean behaviour
is obtained where (p,4./T7) ¢ = O(1) as M — 0. Then, equations (2.42)—(2.44) predict that

4 T . ped.s ¢
A—w—_l, Tz_1+ T ¢ and ‘=7 (2.47)
If ¢ is eliminated, these last two equations imply that
T =T;+pyAie. (2.48)

Typical responses of non-ideal materials as M — 0 are depicted in figure 3.

3. THE INITIAL DEFORMATION OF AN IMPULSIVELY LOADED ELASTIC SLAB

A conceptually simple example of the deformations analysed in this paper occurs when a slab
(panel, bar, string) of elastic material is suddenly loaded at one of its boundaries, X = D, by a
normal traction which is then held constant for some time. During the ensuing deformation the
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other boundary, X = 0, is held rigid. There are two separate cases to consider. The first is when
the material softens for the applied load, so that the load is compressive when the material softens
in compression and tensile when the material softens in tension. The second case, which is a little
more difficult to analyse, is when the material hardens for the applied load.

10
¢
shock
7 s
v
5 o
4= 11
III
I
I
1 I 1 I
\
0 X/D 1 0 X/D 1
Ficure 5 Fi1GURE 6

Ficure 5. The initial wave pattern produced in a non-ideally soft material (M = 0.36) when a load is suddenly
applied and then is held fixed at X = D. During the deformation the boundary X = 0 is rigid.

Ficure 6. The initial wave pattern produced in an ideally soft material (M = 1.1) when a load is suddenly
applied and then is held fixed at X = D. During the deformation the boundary X = 0 is rigid. The applied
traction is large enough for the material to yield at X = 0. After its reflexion from X = D the wave focuses
and a shock forms.

When the material softens the reference state R is taken as the state the material is in before
the application of the traction T;. Then, a centred wave is generated at X = D at the instant the
load is applied. This moves with constant speed 4, towards the rigid boundary X = 0, where it is
completely reflected. Typical examples of the resulting wave patterns in non-ideal and ideal
materials are shown in figures 5 and 6. As the centred wave moves towards X = 0it traverses two
distinct regions. In region I it is a simple wave. During the passage of this wave the material
softens until 7" = T7,. This is accompanied by a decrease in A4 from 4, to Aa. Thereafter, the
material remains in a constant state until the arrival of the front of the wave reflected from
X = 0. In region II, the first interaction region, the centred wave interacts with the wave
reflected from X = 0. No shocks form because the effect of a rigid boundary is to further soften
the material. After traversing the interaction region the reflected wave emerges as a simple
wave into region III, where it moves with constant speed 4, towards X = D. During its passage
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the material continues to soften. When this wave approaches X = D it too begins to interact
with the wave reflected from this boundary. The deformation in this second interaction region
(region IV) depends on conditions at this boundary. In the somewhat idealized situation
when T continues to be held constant the effect of the wave reflected from X = D is to begin
to harden the material. Then, in general, one of two things happens: either the material stops
behaving elastically or the reflected wave begins to focus. In the latter case a shock may form,

ok reference state R

reflected
™ shock

incident
4+— shock

0 X/D 1

Ficure 7. The initial wave pattern produced in a material that hardens when a load is applied at X = D. After
the load is applied it is held fixed while the boundary X = 0 remains rigid. A shock forms at the instant the
load is applied and moves with constant speed towards X = 0 where it is reflected as a constant strength
shock. This shock is reflected from X = D at ¢ = 0 as a centred wave. The reference state R is that induced
after the passage of the reflected shock.

If the material hardens when the load is applied, a shock forms immediately and moves with
constant speeds towards the rigid boundary X = 0 (see figure 7). Behind this shock the material
is in a uniform state with 7 = 73 and « = U. When this shock reaches X = 0 it is reflected as a
constant strength shock that moves with constant speed towards the loaded boundary X = D.
Between this shock and X = 0 the material is in a uniform state with # = 0 and 7" = 7. The
constants U and 7, can be computed in terms of 7, and conditions in the slab before the applica-
tion of the load by using the usual shock relations and the Hugoniot curve for the material (see,
for example, Courant & Friedrichs 1948). When the shock that is reflected from X = 0 reaches
X = D itisreflected as a centred wave across which the traction changes from 7 to 7;. Conse-
quently, if the reference state R is taken as the state that is induced after the passage of the shock reflected from
X = 0, s0 that T, is measured relative to Ty, and the strain is computed relative to this configuration, the analysis
of the subsequent deformation is identical with that for a material that softens when the load T, is applied.
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3.1. Reflexion from an interface separating different elastic materials

The analysis presented in this paper is valid for a rather more general situation than that
described above. Instead of X = 0 being just a rigid boundary, it is taken as an interface with some
other elastic material. At this interface part of the energy of the incident centred wave is reflected
and part is transmitted. However, it is assumed that the energy which may be reflected from the
other boundary of the surrounding material has no influence on the deformation at X = 0. The
limiting cases of a perfectly rigid and perfectly free interface are given special attention.

When the material softens for the applied load, the deformation at X = 0 is continuous. Then,
as was shown in part I, the wave transmitted into the surrounding material is a simple wave.
Consequently, if 77, = T7,(¢y,) is the equation of state of the surrounding material, the condition
that ¢;, = u;, in the transmitted wave together with the conditions that 77, = 7" and that u;, =
at the interface implies that

at X=0, Ty(u) = T(c). (3.1)
Condition (38.1), with ¢ and « given by equations (2.2) and(2.4), determines a relation
F=L(G) at X=0. (3.2)
\L‘
\\\
1\:\\~ t
T
\
R
X=0 X=D
=

X=0 X= X=0 X=D

Ficures 8-11. The four possible wave patterns that can occur when an elastic slab is suddenly loaded at X = D
by a traction that generates a shock. The interface X = 0 separates the slab from some other elastic material.

When the material hardens for the applied load, the incident shock can be reflected from X = 0
either as a shock or as a centred wave. In either case the transmitted wave can be a shock or a cen-
tred wave. The four possible wave patterns at X = 0 are depicted in figures 8-11. The strengthsof
the transmitted and reflected waves can be calculated by the same procedure as used by Courant
& Friedrichs (1948) to obtain the strengths and natures of the waves that are produced when a
constant strength shock travelling through a gas reaches a contact discontinuity. The arguments
are straightforward, even though the algebra is rather messy: they will not be presented here.
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When the wave reflected from X = 0 is a shock, as is depicted in figures 8 and 9, the material
is in a uniform state after its passage with u = u, and 7" = T;. If this state is taken as the reference
state R, the analysis of the deformation after the shock is reflected from X = D as a centred wave
is almost identical with that for a material that softens when the load is applied. The only differ-
ence is that u = u, ahead of the centred wave. The two problems are identical if a velocity —u,
is imposed on the system.

When the wave reflected from X = 0 is a centred wave, as it is when X = 0 is a perfectly free
boundary, the start induced by the passage of the incident shock is taken as the reference state
R (see figures 10 and 11). Thus, in the measurement scale adopted, the boundary X = D acts as
a perfectly free boundary at the arrival of the wave centred at X’ = 0. Consequently, a description
of the deformation during this reflexion can readily be obtained from an analysis of the deforma-
tion that occurs when a wave centred at X = D isreflected from a perfectly free interface at X = 0.

3.2. Shock loading

The solution of the problem outlined in § 3.1 can be used to describe the early stages of many
practically important deformations. One example is the deformation produced in a slab of elastic
material when a constant strength shock wave travelling through an adjacent material arrives
at their common interface. During the subsequent deformation energy is radiated across the
other boundary of the slab to some adjacent material. For example, the slab could be a panel
surrounded on both sides by air, or it could be an element of some composite material.

Suppose that the incident shock travels through the material to the right of the slab. When it
reaches X = D either a centred wave or a shock wave is transmitted into the slab and either a
centred wave or a shock wave is reflected. In all cases the traction at X = D changes discontinu-
ously at the arrival of the shock and remains constant until the arrival of the wave reflected from
X = 0. The analysis of the deformation during this first reflexion is identical with that for the
problem described in §3.1. Only at the arrival of the reflected wave at X = D do the characters
of the two deformations begin to differ. Now, energy is radiated across the interface X = D. Note
though that if a shock wave is transmitted into the slab and if this is reflected from X = 0 as a
centred wave (as is illustrated in figures 10 and 11) the deformation during the first reflexion
from X = D can also be described by our analysis. For when this wave reaches X = 0 a simple
wave is transmitted into the adjacent material. Consequently, by using the same argument as
that used in §3.1, during the reflexion of this wave

at X=D, G=R(F), (3.3)

where the function R(F) is determined by the equations of state of the two materials separated by
the interface X = D. On the other hand if the transmitted wave is a shock and if this is reflected
as a shock from X = 0 (as illustrated in figures 8 and 9) any one of the four possible wave con-
figurations can occur when this shock reaches X = D. For two of these the wave reflected from
X = D is a centred wave and the subsequent deformation is similar to that produced when the
wave that is first transmitted into the slab is a centred wave. For the two other possible wave
configurations the wave reflected from X = 0 is again a shock and the subsequent deformation is
similar to that produced when the transmitted wave was a shock.

It should be pointed out that in many materials the stress-strain relation differs from
particle to particle after the passage of a shock of variable strength. This is caused either by the
production of strong entropy gradients (as in gases) or by the basic hysteretic structure of the
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material (as in soils). In general this induced stratification of the material greatly complicates the
analysis of its subsequent deformation. Here, though, since we only deal with constant strength
shocks these difficulties do not occur although our analysis is ony applicable to hysteretic mater-
ials as long as the material continues to soften.

3.3. Impact loading

An analysis of the problem outlined in § 3.1 can also be used to describe the early stages of
the deformation that occurs when a bar, or a slab, moving with a constant velocity —us > 0
impacts a rigid wall. Then, referred to a coordinate system moving with the bar, at the moment
of impact the velocity of the end of the bar changes discontinuously from zero to u,. It stays at
this value while the end of the bar remainsin contact with the wall. If the material softens in com-
pression, a centred wave is generated at X = D at the moment of impact. Although this wave is
reflected as a continuous wave from X = 0 it may, subsequently, focus and form a shock before
reaching the boundary X = 0. If, however, the material hardens in compression a shock is gen-
erated at X = D at the moment of impact. This is reflected from X = 0 as a centred wave. This
centred wave is, in turn, reflected from the rigid boundary X = D as a continuous wave.

Obviously a solution of the general problem outlined in §3.1 can also be used to analyse a
slightly more general impact problem than that described above. The ‘hitter’ bar can be a
composite of two materials separated by the interface X = 0 and the impacted material can also
be elastic.

4, THE INTERACTION OF A CENTRED WAVE WITH ANY WAVE TRAVELLING
IN THE OPPOSITE DIRECTION

In this section we analyse the problem described in § 3.1. Thisis done by obtaining arepresenta-
tion (equations (4.8) and (4.9)) that describes the interaction of a wave centred at X = D at
¢t = 0 with any wave travelling in the opposite direction. Then, in subsequent sections we show
how to determine the arbitrary functions occurring in this representation when the opposite
travelling wave is the wave that is reflected when the centred wave arrives at an interface with
some other elastic material.

We suppose that at ¢ = 0 the bar is in equilibrium in its reference state R where all the state
variables (u,¢, T, e) are zero while 4 = 4,. Then, at ¢ = 0 the traction at X = D changes dis-
continuously to 73. This generates a centred wave at X = D that moves with speed 4, towards
the interface X = 0. There the wave is partly reflected and partly transmitted. The centred wave
traverses two distinct regions. In region I, neighbouring X = D, F = 0 and the wave is a centred
simple wave. During its passage, at any X, T changes monotonically in time from zero to 7.
Therefore, T' = T, until the arrival of the wave that is reflected from X = 0. As 7" changes from
zero to Ty, the state variables #, ¢ and G, which are equal, change from zero to ¢,; ¢ changes to
¢a; and A decreases from 4, to Aa. The constants ¢a, ¢, and 4, can be computed in terms of T
by inserting the expressions (2.13), (2.15) and (2.35) for A(c) in the relations (2.3). When the
applied load is tensile (73, ¢a) > 0; when the applied load is compressive (73, ¢a) < 0. InregionII,
the first interaction region, the centred wave interacts with the wave reflected from the interface
X = 0. Here F'is not zero but must be calculated from the fact that at X = 0, u and ¢ are related
by equation (3.1).

26 Vol. 277. A.
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In part I it was shown that as the centred wave traverses both region I and II, equation (2.7)
implies that

2A%aa—;),+[/tt+v(1—X)] G'(p) = 0.1 (4.1)
If we use the fact, which follows from equations (2.2) and (2.5), that
, 0 04
G'(p) _@_A (u4vA) 7 (4.2)

together with the fact, which follows from the first of equations (2.1), that

0 ot
ag[#tJrV(l—“X)] = [ﬂ-VA]a—ﬁ, (4.3)
cquation (4.1) implies that

+vd4\ 0 04
A(//Z——MA)EB[ﬂt+V(1——X)]+5B-[ﬂt+V(1_X)] = 0. (4.4)

3
This equation can be written %([,ut +r(1—-X)] ,uf—vA) =0, (4.5)
which integrates to give pt+v(1—X) = ¢(a) A~ (u+vA4), (4.6)

where ¢ (o) is a ‘constant’ of integration. When the expression (4.6) for [#¢+v(1 — X)] is inserted
in equation (4.3) this yields the equation

ot LY.
53 = ¢ (a) 6—/? (4.7)

Equations (4.6) and (4.7) imply that in the centred wave ¢ and X can always be expressed in
terms of 4 and « by relations of the form

t=¢(a) At +7(a) (4.8)

and 1-X = ¢(a) A+ M71(a), (4.9)
where 7() is a ‘constant’ of integration for equation (4.7). The material parameter

M = —ulv (= — ul[d,vin dimensional variables). (4.10)

Once the functions ¢(e) and 7(a) have been determined, equations (4.8) and (4.9) determine
A(x,t). In particular, to calculate the variation of 4 with f at any specified particle note that at
constant X equation (4.9) determines 4 as an explicit function of the characteristic parameter c.
When this expression for 4 is inserted, equation (4.8) then determines ¢ as an explicit function of «.
Consequently, the variation of 4 with ¢ is easily obtained. Similarly, the variation of 4 with
X at fixed ¢ follows immediately from equations (4.8) and (4.9). Once 4(X, ¢) has been deter-
mined, the variations of ¢, 7" and e follow from equations (2.3), (2.13), (2.15) and (2.35). Note
that the trajectories of constant stress and strain can be obtained from equations (4.8) and (4.9)
by holding 4 fixed and varying .

+ In this equation, and from now on, distance is measured in units of D, time in units of D[4,, and velocity in
units of 4. Also, stress is measured in units of p, 42 and the material constants x and v in units of 45% and 45 %
respectively. This measurementt scale is adopted to avoid messy algebraic expressions.
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Equations (4.8) and (4.9) also determine the trajectories of the a-characteristics. For if 4
is eliminated from these equations, they yield the relation

(1=X—Mr) (t—1) = ¢2 (4.11)

Since 7 and ¢ are constant when « is constant, equation (4.11) determines the relation between
X and ¢ at any a-characteristic: their graphs are always hyperbolas in the (X, ¢) plane.

It remains to determine #(X, ¢). To do this first note that the functions F(e), ¢(a) and 7(x)
are not independent but are related by the condition that

dr/da = vpdF/de. (4.12)

This follows when the expressions (4.8) and (4.9) for ¢t and X are inserted in the second of
equations (2.1) if the facts that 4(c) satisfies equation (2.5) and that ¢ is given by equation
(2.2) are used. Then, use the fact, which follows from equations (2.2) and (2.4), that « can be
expressed in terms of 4 and « as

u=70¢(4)—2F(a), (4.13)

where the function ¢ = ¢(4) is obtained from relation (2.13) when 1 < M < o, from relation
(2.15) when —o0 < M < 0, and from relation (2.35) when 0 < M < 1. Equations (4.8), (4.9) and
(4.13) determine «(X, t) once the functions ¢, 7 and F are known.

The trajectories of the #-characteristics can be calculated from equation (2.2). This states that

at constant f, ¢(4) —F(a) = G, is constant. (4.14)

5. INCIDENT WAVE

To calculate ¢ and 7 in region I, first note that in the reference state R where 4 =1 (= 4,
in dimensional variables) equations (2.1) integrate, subject to conditions (2.8) and (2.9), to give

a=1{—X and f=t+X-1. (5.1)
Consequently, at the front of the centred wave, where f = 0,
t=31+a), X=41-a), A=1 and F=0 for —-1<a<l. (5.2)

When the information (5.2) is inserted in equations (4.8) and (4.9) these yield the results that

p=4%1+4a) and 7=0 for —1<a<l. (5.8)
Equations (4.8) and (4.9) then imply that
A=(1-X)[t for Ada<A<1, (5.4)
and that a=2[1-X)t]}-1 for —1<a<1. (5.5)
Since F = 0, equations (4.13) and (5.4) imply that
u=c=¢[(1-X)[T]. (5.6)
Also, according to equation (4.14) and (5.6), the f-characteristics are the rays
(1—X)/[t = constant. (5.7)

The solutions described by equations (5.4)-(5.7) are the well-known centred simple wave

solutions.
26-2


http://rsta.royalsocietypublishing.org/

. \
A 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

FA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

210 J. Y. KAZAKIA AND E. VARLEY

6. THE INTERACTION OF THE INCIDENT CENTRED WAVE AND THE WAVE
REFLECTED FROM A PERFECTLY FREE INTERFACE

The incident centred wave remains a simple wave until it is met by the front of the wave re-
flected from X = 0. The trajectory of this front is given by equation (5.5) with & = 1: it is

(1-X)t=1. (6.1)

At this front, equations (5.4) and (6.1) imply that
4= (1-X)2 (6.2)
Since the interaction region is completely traversed by the front when 4 = 4,, in equation (6.1)
0<X<1-4 and 1<t<47E (6.3)

6.1, Perfectly free interface

As a first, comparatively simple, illustration of how to use the results established in §4 to
calculate the deformation in region IT we consider the case when X = 0 is a perfectly free inter-

face. Then,
at X=0, where t=a, T=0, A=1 and ¢=0. (6.4)

When the information (6.4) is inserted in equations (4.8) and (4.9) these imply that
7= (a—1)[(1—M) andthat ¢ = (1-Ma)/(1-M). (6.5)
Conditions (4.12) and (6.5), together with the result that /= 0 when « = 1, then imply that
F=ptlng. (6.6)
The relations (6.5) hold for 1 < @ < «a, where

oy = 1+-1—;—/[i4[1-—exp(—,ma)]. (6.7)

This follows from equations (6.5) and (6.6) and the fact that the back of the centred wave, at
which G = ¢a, reaches X = O when F = —G = —¢a.
When the expressions (6.5) are inserted in equations (4.8) and (4.9) they imply that

A X
¢ = (1_Mt)A%—M= 1_A% (6.8)

The second of these two relations yields the result that
A=H1-0)+[(1-0)2+4M0O)% where 0= X/(1—Mz). (6.9)

These equations determine 4 as an explicit function of (X, ¢). To determine u(X, ) use equations
(4.13), (6.6) and (6.8): these yield
u=_¢4)-2pIng, (6.10)
where ¢ (X, t) and 4(X, ) are given by equations (6.8) and (6.9).
Since ¢ is constant at any a-characteristic their trajectories can readily be determined from
equations (6.8) and (6.9). To calculate the trajectories of the f-characteristics as they are
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refracted by the reflected a-wave use equations (4.14), (6.6) and (6.8). These imply that a
constant f,

(1—Mt) A Mexp[ ué(A)] = 1-iYA% exp [ — ué(S4)] = constant, (6.11)
= 11__];‘? say, (6.12)

where f is the arrival time of the S-characteristic at X = 0. In particular, the trajectory of the
back of the centred wave, which corresponds to f = aa, is given parametrically by

1— Mt = A‘A M p @) —ca)] and X = (1—AY) exp[p(@(d)—ca)],  (6.13)

ford, < 4 < 1.

According to equations (6.9) constant levels of 6, which correspond to constant levels of 4, 7,
¢ and ¢, propagate with constant speed | M6|. The direction of propagation is towards X = 0 (like
in the incident wave) for a non-ideal material and away from X = 0 for an ideal material. This
O-wave is centred at (X,¢) = (0, M~). For ideal materials { = M~ < 1 — the instant the front
of the incident wave arrives at X = 0. For non-ideal materials = M“ > o, — the instant the
back of the incident wave arrives at X = 0. It should be noted that equations (6.8) and (6.10)
imply that constant levels of # do not usually coincide with constant levels of 6.

6.2. Shock formation

The main effect of the wave that is reflected from a free interface is to harden, or unload, the
material. This causes one of two things to happen: the material either stops behaving elastically
or the reflected wave focuses and a shock may form. The results derived in §(6.1), and in the
remainder of the main body of this paper, are only valid for materials that continue to behave
elastically on unloading.

Although the reflected a-wave can never focus rapidly enough for a shock to form in region 11
when the material is non-ideal, if 73/7] is sufficiently large a shock can form in an ideal material.
This is best seen by noting that at any constant X

D4 M6

T =1 40), (6.14)

where A4(6) is given by equation (6.9). Accordingly, a shock forms when A4’(8) is unbounded. This
happens when 6 = 05 and 4 = As, where
(1—0)24+4M0Os =0 and Ag=-—M0bs. (6.15)
The largest value of 4 lying in the range (4a, 1) determines the shock that forms first: it is
As = M2[1—(1—- M1)1]2 (6.16)

Since A is always imaginary when M lies in the range (0, 1), no shock can form in a non-ideal
material in region II. However, if T5/7] is sufficiently large for A4 to attain the value 44(M) a
shock will form in an ideal material. This happens whenever

To/Ti > Sy(M), (6.17)

where the function S,(M) is graphed in figure 12. S,(M) is the value of T/7; corresponding
to A = As(M). Note that the criterion for shock formation only depends on the material
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212 J. Y. KAZAKTIA AND E. VARLEY

parameter M. When the condition (6.17) is satisfied a shock forms at the front of the reflected
wave. This follows from the second of equations (6.9) and equations (6.14). These imply that
the ray 0 = 05 does not actually intersect the interaction region but is tangent to the front (6.1)
at the point (X, £ ), where

v X, =1-4t and 1, = 4% (6.18)

Sa

Once a shock forms it produces a reflected wave that moves towards the free interface X = 0.
The front of this wave is the f-characteristic that passes through the point (X, %, ) when 4 = 4.
The description of the deformation given in § 6.1 is only strictly valid at a particle until the time
that this front arrives. However, in practice, it may provide a good approximation as long as the
wave reflected from the shock remains weak.

2.0— '
— '/ucrit
______ + —10
g ) — —
. 5
< S I —0.8 i
% i
S X, “/~~/ —06
Lo=""" o —m—mn=
Tovie J I n
I e 1/ [
] .
—0.2
I |
05 ) 0 1 M 5 0

Ficure 12. The variations with M of the least value of T,/ T}, and the equivalent value of (p, 4,/ T}) ,, for which a
shock will form in region II during the reflexion of a centred wave from a free surface. The shock forms at
the front of the reflected wave at X = X,(M).

6.3. Limiting cases
(1) Hookean material (M — 1)

When the material response is linear any discontinuous change in 7 at X = 1 is not smoothed
by amplitude dispersion but propagates as a discontinuity towards X = 0, where it is reflected
as a discontinuity. In order to illustrate the effect of small deviations from linear response, and at
the same time to relate conditions across the incident and reflected discontinuities, it is instructive
to consider the limiting behaviour as A/ — 1 from values < 1. According to the results derived
in part I (see I, (9.15)), in this limit the incident centred wave is a fan in which

A=(1=X)ft=1+0(1—M). (6.19)
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In this fan, to a first approximation,
u=c=e=T=—7}ln[1—1—__1—j—/I(1—A)] for 0<T/Ta<t. (6.20)

In the interaction region X = O[(1—~M)] and ¢ = 1+ O[(1—M)]. Consequently, it is con-
venient to work with the variables

X=(1-M"1X and 7= (1—M)1(t-1). (6.21)

Then, conditions (6.1)-(6.2), (6.13) and (6.19)-(6.20) imply that the interaction region is bounded

by the trajectories _ __
I—X=0 and 7+ X=1-—exp(Ta/T;). (6.22)

In this region conditions (6.8) and (6.9) imply that

A=1—(1—M)1+2§__f and ¢ =1+X—7 (6.23)
so that, by conditions (6.20), T=¢=-T;In [1—_—{———{] (6.24)
1—-i+ X
Also, conditions (6.10) and (6.23), with #(4) determined from conditions (6.20), yields
u= —TyIn[(1-7)2— X?]. (6.25)

According to equation (6.22) the incident wave is completely reflected from the free interface
X = 0 when [ =1-—exp(—TaT;). (6.26)
By this time, condition (6.25) implies that the velocity of the interface

u = 2T, (6.27)

which, according to equation (6.20), is twice its value in the incident wave. Note that although
the result (6.23) predicts that 4 increases with ¢ at any fixed X, the reflected wave can never
focus rapidly enough for a shock to form in the interaction region.

(ii) Perfectly elastic—perfectly plastic response (M — 1 +)

To discuss the limit as M — 1 from values > 1 it is convenient to introduce the parameter
N = —$In(M—1). (6.28)
Then, in the incident centred wave, conditions (2.25) and (5.4) imply that
as 7y—>00, A= (1-X)[t=rtanh?[y,(1— T/T})]/tanh?®y, for 0 < T/ < Tof/TL < 1. (6.29)
In addition, c=u=T, (6.30)

while ¢ is given in terms of T by equation (2.26). Conditions (6.29) and (6.30) imply that 77}
and /7 can change from zero to any value o < 1in a fan where

4d=(1-X)[t=1+0[(M-1)17]. (6.31)
. 11-4
In this part of the fan T=e=c=—Tlln(1+ZA7_—_—1-)/ln(M—~ 1). (6.32)

However, if the applied traction 73 approaches the limiting value 7i, 4 varies over the full range
(1, 0) in the incident fan and the full description (6.29) must be used.


http://rsta.royalsocietypublishing.org/

|
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

214 J. Y. KAZAKIA AND E. VARLEY

Since 4, can take the limiting value zero, conditions (6.1)—(6.3) imply that the interaction
region is not necessarily limited to some small neighbourhood of X = 0 but can fill the whole
slab. However, conditions (6.16), (6.18) and (6.29) imply that the wave reflected from a free
interface must always focus and form a shock if 73/7; > . Since the shock forms at the front of
the reflected wave at the point

Xy = (M—1)}=(M—=1)+O0[(M—1)}] and 4, =1+(M—1)+0[(M-1)}] (6.33)

only that part of the interaction region in which X and ¢ —1 are O[(M — 1)#] is unaffected by the
shock.

A careful study of the representations (6.8)—(6.10) shows that in that part of the interaction
region where X and ¢— 1 are O[(M — 1)}] the statements (6.23) for 4 and ¢ still continue to hold.
T, ¢ and ¢ can then be determined as explicit functions of X and 7 from conditions (6.32), and
# from the condition that

u = ﬂln[(lﬁ)z(4+;4‘_‘4l)]/1n (M—1). (6.34)

The result (6.34) follows from condition (6.10) and the fact that

as M->1+, pt~Tjn(M—1). (6.35)

Although the representations (6.32) and (6.34) remain valid, in some neighbourhood of the
point (6.33) where

X=0[(M-1)}], =M-1)}X say, and t—1-X=O0[(M—1)] = (M—1)(X-7),

(6.36)

the representation (6.23) for 4 is invalid. In this region, conditions (6.9) imply that
0=—14+(M—-1)}0 where 0= (1+X-0)/X, (6.37)
and that A=1+(M-1)(2-4)1-6] for 2<8<o0. (6.38)

Conditions (6.32) and (6.34), with 4 given by equations (6.37) and (6.38), determine T, ¢, ¢
and u as explicit functions of X and ¢. The shock point (6.33) corresponds to & = 2. The expression
(6.23) for 4 is obtained from equations (6.36) and (6.38) in the limit as & - oo (holding 7 and X
fixed but letting X — 0).

(iii) Rigid-elastic response (M — 0 +)
To discuss the behaviour of a rigid—elastic material we suppose that?
T[Ty > 1+|0(M3)). (6.39)
Then, it follows from conditions (2.24) and (2.43) that
Aa = O(M) sothat dafd, = O(1), (6.40)
while Mey - T[T, — 1. (6.41)

It is best to work with the time measure
1% = Mt (6.42)

 This means that 14dM#% < T,|Tr < o for some d > 0.
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rather than with ¢ (#* measures time in units of D[4, ¢ measures time in units of D/4,.) On
this scale the fronts of the incident and the reflected waves propagate with infinite speed. Conse-
quently, they are represented by the single curve ¢* = 0 in the (¢*, X) plane. Figure 13 depicts
a typical interaction region in the (¢*, X) plane. It is bounded by the curves

X=0, 1-X—t¥=0, t*=0 and #*= o (6.43)

where o = Moy = 1—exp[2(1-T4/T;)]. (6.44)
The statement (6.44) follows from equation (6.7) and the fact that

M -—>2T;r as M- 0+, (6.45)

which follows from equations (2.42)—(2.48). Figure 13 also depicts the limiting trajectories of the
o and S characteristics and the trajectories of constant levels of 7 and e.

1 \\

\. \\
NN

VNN

0

F1cure 13. The reflexion of a centred wave from a free interface in a rigid-elastic material (M — 0+). The
interaction region is bounded by the curves X = 0, 1—X—¢* = 0, t* = 0 and t* = o} where t* = Mt
and af = 1—exp [2(1—T,/T7)]. , The trajectories of constant stress; —«¢—, f-characteristics; ~»¥ —,
a~characteristics.

Over the most of the interaction region, outside a fan centred at (¢*, X) = (1,0), where
0 = 1—0(M?%), the material is in a rigid state with 7/7; < 1. There, equations (6.9) predict
that

1—X—1*\2
A= (1—-0) = (T:Zr) (6.46)
It follows from the first and second of the equations (2.46) that
T X
7——11 =0= T~ (6.47)
while, according to equations (2.46) and (6.46)
pOAEo 1 P 1 - t* 3 _
T e=3M T—F—x) 1 (6.48)

27 Vol. 277. A.
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Also, according to equations (6.8), (6.9) and (6.45),

”Ojflwu = —In (1—%), (6.49)
I

so that the motion of the slab is independent of X. In equation (6.49), for ease of interpretation,
Ao, T; and u denote dimensional quantities. Note that equations (6.47) and (6.49) predict that

when #* =0, =0 and 7T/T;=X for 0<X< 1. (6.50)

The representation (6.46) for A is invalid in a small angle fan neighbouring the ray 0 = 1,

where
1-X—t* = 0(M?}), = Mis say, and 0 <t* <o, (6.51)

Across this fan 7" changes rapidly from 7 to 7;. If we write

0=1—M30 where 0 =s[(1—1t*), (6.52)
condition (6.9) implies that in this fan
A=1M[O+ (62+4)F]2 (6.53)
When 4 is given by (6.53), equations (2.42) and (2.43) imply that
%: {4+ 1M1 [m(%) _9—(92+4)%]. (6.54)
Inequations (6.51)~(6.54), 0, <6 < (6.55)

where 0, corresponds to 7" = T;. Note that as  — co, equations (6.53) and (6.54) predict that
A— M@+ (1-0)2 while TJ7; - 1—M30 =0, (6.56)
which are the values (6.46) and (6.47). Also note that
when * =0, 0= (1-X)/M% (6.57)
Since condition (6.53) predicts that 4 = O(M) for finite 6, equation (6.8) predicts that
when M =0, ¢=1-t*=2X. (6.58)
This condition, together with conditions (2.42), (6.10) and (6.45), then yield the result that the
representation (6.49) for u is uniformly valid in the whole interaction region.
(iv) Rigid-plastic response (M — 0—)
According to the limits (2.28), the equation of state describing rigid—plastic response con-
tains two material parameters: the limiting traction 71, and ¢, the limiting value of ¢. Since u = ¢
in a centred simple wave, ¢ is the velocity with which the boundary X = 1 moves when it is

loaded by the traction 7j.
We calculate the details of the deformation when

To/Ti=1—(—M)%%,, where 0<Xy=0(1) as M-0. (6.59)
It is best to work with the variable {=(—M)tt, (6.60)

rather than with £ This measures time in units of (2/x) (pyc1/7i)D. On this scale, the front of the
incident wave propagates with infinite speed towards X = 0 and is represented by the single
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curve { = 0 for 0 < X < 1. The front of the reflected wave also propagates with infinite speed
until it reaches a layer where

= |0O(M)]%. (6.61)
In this layer the reflected wave is strongly refracted by the incident wave and focuses to form a
shock at a point (Xg,#s) which - (1, 1) as M — 0. This shock generates a reflected wave that
crosses the layer (6.61) over the period 1 < f < 4w and then propagates towards X = 0 at infinite
speed. Thus, as M — 0 the only part of the interaction region that is not affected by the shock is
the rectangular domain (see figure 14)

0<f<in (0<X<1). (6.62)
2 front of the wave
* .reflect}(led 1f{rom the
snoc
A
e —— B e e e e — —
1p- 3
} _ shock forms—"
A
A
—— > - — — — > — A
0 X 1

Ficure 14. The reflexion of a centred wave from a free boundary in a rigid—plastic material (M - 0—) when
T,)T = 1— |O(M)|% Except in a layer where 1—X = |O(M)|} the material is in a rigid state. A shock
forms at X = 1 when f = (=M Vit = 1. , The trajectories of constant stress; —3 —, f-characteristics;
— 4<€—, a-characteristics.

Over most of the region (6.62), outside the layer (6.61), the material is in a rigid state. There,
conditions (6.9) and (2.28)—(2.33) imply that

A=(1-X)? T=TX and e= —%p" Ll(1-X)3-1]. (6.63)
In addition, conditions (6.8) and (6.10) imply that
u="2af (6.64)

ui

To prove the result (6.64) we have also used the fact, which follows from equations (2.28) and
[1, (8.59)—(8.64)] that

2 T 2
as M-—>0—, ,u,—>—%-—~l-2- and ca—>cl pocl

o q = (A (6.65)

The displacement corresponding to the strain (6.63) and the velocity (6.64) is

2
d= x—X=;E2§B—c7;€l{f2~%M[(1—X)—2—2X— 1]} (6.66)
1

27-2
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In the layer (6.61), where the material ‘flows’,

f=_-001) as M0, (6.67)
2¢
Then, conditions (2.28)—(2.30) imply that
A=—Mcot2;, T[Ti=1—(—M)icotc (6.68)
. 2\* L ftam i 7 A
and that —e=|=) (=M)~%(tan¢—¢) for 0<¢< §m. (6.69)
Poli T
?:%,T ______ —
- o
-—-» —————
|
- o —— _—
- ——p— — — -
SR
—~—
e T
|

10
s (=1=-X) (-M)-*

Ficure 15. The wave pattern produced in a rigid-plastic material in a layer neighbouring the loaded boundary
X = 1. In this layer the material flows. , The trajectories of constant stress; —<—, f-characteristics;
—»p —, a-characteristics.

It is best to work with # and the distance measure
s=(1-X)(=M), (6.70)

which varies over the range 0 < s < c0. The wave pattern in the (7, s) plane is shown in figure 15.

The incident fan occupies the region .
0<tfs <272 (6.71)

and, before a shock forms, the front of the reflected wave is represented by the hyperbola
fs=1 for Zy<s<oo and 0<{<I;L (6.72)

In the incident fan conditions (5.4), (5.6), (6.59), (6.67) and (6.68) imply that

£\ %
tan¢ = tan (%n?—) = (é) . (6.73)

1 8}
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When the expression (6.73) for ¢ in terms of (7, s) is inserted in equations (6.68) and (6.69) these
determine 4, T"and e as explicit functions of (7, s). The displacement corresponding to this strain
field and the velocity field given by equation (6.73) is

2 2 2 A
d=x—X= (T—C) 8—%? (¢ cosec?¢ —cot?)t. (6.74)
1

In the interaction region equations (6.10) and (6.68) imply that
sin 2¢ = 2(f 45)~1. (6.75)
Equations (6.8), (6.10), (6.68) and (6.75) imply that
u =T—2Ccl(c'—s+cotc'). (6.76)
The displacement field corresponding to the strain and velocity fields given by equations (6.69)
and (6.76), with ¢ given by condition (6.75), is

_ 2podt

=55 (2 + 4¢ cosec (26) —tan2i—2). (6.77)
1

In addition, conditions (4.11), (6.5), (6.60) and (6.70) imply that the trajectories of the «-
characteristics as they cross the layer (6.61) are given by
(f-&) (s+&) =1, where &= (—M)ta. (6.78)

Also, conditions (6.11) and (6.12) can be used to show that the trajectories of the f-characteristics
are described by the equations

f=ﬁ+(tanc‘—~25) and s=—/§+2c’+cotc‘, where ﬁ’=(—M)%,E. (6.79)

Note that the expressions (6.63), (6.64) and (6.66) can be obtained from the expressions (6.68)-
(6.70) and (6.75)—(6.77) as s - oo at fixed {. Also, in equations (6.78) and (6.79)

@p)~t as s—>o0 (¢->0). (6.80)
In equations (6.67)-(6.80) ¢ varies over the range
0 <¢ < ¢, where cotéy= 2. (6.81)
If X, < 1, s0 that ¢, > 1=, conditions (6.72) and (6.75) predict that a shock forms at the point
(f,5) = (1,1) where ¢ = }m. (6.82)

This produces a reflected wave whose front is given by equations (6.74) with é = In. After
traversing the layer (6.61), this front moves with infinite speed towards X = 0, where it arrives
when 7 = }x. Figure 15 illustrates this situation. The broken curves represent characteristics, the
full curves constant levels of stress and strain.

Figure 16 depicts the variations in strain at several typical particles in the layer (6.61). These
variations follow from equations (6.69), (6.70), (6.73) and (6.75). In figure 17 we have graphed
the displacement of these same particles when 73 = 71 (X = 0). At the end of the bar

_ 8/30512‘ M.
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in the rigid region d= —z—egc—%fz (s = o0) (6.84)
7 Tq ’

Consequently, by the time (f = 1) that the shock forms, the particles in the layer (6.61) occupy
a region of width 1.36 p,¢f/T1 D.
(v) v =3 (M- )

As alast illustration of the general theory described in §6.1 we consider the limiting behaviour
as M — co. In this limit equations (6.5), (6.8) and (6.9) imply that

T=0, ¢=0a=3%[1+(1-4X[t)}] (6.85)
and that A =1+ (1-4X/1)i]2 (6.86)

02

Ficure 16. The variations in strain at several particles near the loaded boundary of a rigid-plastic material
during the reflexion of a centred wave from a free interface.

3
Poly

Fieure 17. The displacements of several particles near the loaded boundary of a rigid—plastic material
during the reflexion of a centred wave from a free interface.

The rays 0 = constant, on which T, ¢ and ¢ are constant, are centred at (X,f) = (0,0). These
state variables can be calculated as explicit functions of (X, ¢) from equation (6.86) and the facts
that (see I, (8.55)—(8.57))

2
—1oa, 2o, 34y (6.87)

T T
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pods _
and -——ﬁ-c—?»(l 4%).

It follows from equations (6.10), (6.85), (6.86) and (6.88), together with the fact that

_2p 43
3 T
P, _ spi— 4t :
that U= 3[1 -4t +1In (242)].
1
For a gaswithy = 3, Li=~p, and Aj = 3py/p,.

Finally, equations (6.11), (6.86) and (6.88) imply that
B = tdkexp[2(1—4Y)],
while equations (6.16) and (6.18) imply that
As=13%, S3=3% Xs=% and 7, =2

221

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

Figure 18 depicts the characteristic curves and the trajectories of constant levels of stress and
strain when T3/} = §. Then, a shock forms at the reflected front just as it emerges from the inter-

action region.

0 X 1

Ficure 18. The characteristic curves (—-) and the trajectories of constant levels of stress (——) during

the reflexion of a centred wave from a free interface when M = oo (y = 3).

7. THE INTERACTION OF THE INCIDENT CENTRED WAVE AND THE WAVE

REFLECTED FROM A PERFECTLY RIGID INTERFACE

When a centred wave is incident at a rigid boundary the reflected wave continues to soften
the material. Consequently, no shocks form. In fact, for an ideally soft material, if 75/7; is greater
than some critical value that only depends on M, the incident wave is so strongly refracted by the

reflected wave that part of it never reaches X = 0.

The functions F, ¢ and 7 are a little more difficult to determine at a rigid interface than at
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a free interface. The procedure for doing so, though, is quite straightforward. First note that
conditions (4.8) imply that ¢ and 7 can always be expressed in terms of « and m(a) (= 4% at
X =0)as

m m2a—1

¢=m(1—MOL) and T=m. (71)

The problem then reduces to determining m(a) at a rigid interface. To do this use the fact that
at X=0, since u=0, F=G=1, (7.2)
so that the equation of state (2.5) implies that

dr o3 dm
When the expressions (7.1) and (7.3) are inserted in condition (4.12) this yields the first order

equation

m(mz——M)g—Zl+1—Moc=0 (7.4)

for m(e). When this is integrated, subject to the condition that m = 1 when « = 1, we obtain

. 3
m=[(Mﬁ(f)£+}‘)4_l], F = 1é(m?) (7.5)

go LoM(Ma—2eMo1d o 1o
“1-Ma| MM=1) A

(7.6)

When the expressions (7.5) for ¢(o) and 7(a) are inserted in (4.8) and (4.9) these equations
can be solved for 4 and a. The solutions are

Ad=MX>+M-1)/[(Mt—-1)2+M-1], (7.7)

and o=[(M-1)t+(t—-1)X]/[M—1+(Mt—1) X]. (7.8)
According to equations (4.13) and (7.5)

u = ¢(A) —é(m?), (7.9)

where A(X, ) is given by equation (7.7) and m? is determined as an explicit function of (X, ¢)
from equations (7.5) and (7.8).

Although the trajectories of the f-characteristics can be calculated from condition (4.14) by
using the information in equations (7.5)—(17.9), it is best to proceed directly and use the fact that

at constant £, dX/dt= —A. (7.10)
When the expression (7.7) for 4 is inserted, equation (7.10) integrates to give

M-1t+(1-0X (B-1)°+(1-M)p*

(M-1)+(1-M)X  MPB-1)2+1-M"’
where f§ denotes the time the f-characteristic crosses the front of the reflected wave. According
to equation (6.3),

=p say, (7.11)

1< B <458, (7.12)

The trajectories of the front and the back of the centred wave as it traverses the interaction region
are described by (7.11) with # = 1 and g = 4;%.
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Figures 19 and 20 show the trajectories of the characteristics in region II for a typical non-ideal
material (M = 0.357) and a typical ideal material (M = 1.1). In a non-ideal material the incident
wave is completely reflected from the rigid interface in a finite time, in an ideal material the
influence of the incident wave may persist indefinitely. For, according to equation (7.11), when
M lies in the range (0, 1) any f-characteristic that crosses the front of the reflected wave at ¢ = g
reaches the boundary X = 0 at ¢ = g. This implies that for any finite value of 7} the incident
centred waveis completely reflected from X = 0 prior to £ = M~1 — the value of § corresponding to
Ao = M and f = M~%. For an ideal material, however, only those f-characteristics that cross
the front at time § lying in the range

= Pent. say, (7.13)

/f<1+(MM1),

|
.0 05 X 10

Ficure 19. A typical reflexion of a centred wave from a rigid boundary in a non-ideal material (M = 0.36).
The centred wave is always completely reflected in a finite time. , Trajectories of constant levels of stress;
— —, the characteristic curves.

0 X 1 .
Fieure 20. A typical reflexion of a centred wave from a rigid boundary in an ideal material (M = 1.1). If the
applied traction is sufficiently large the material yields at the rigid boundary and the centred wave is not

reflected in a finite time.

, Trajectories of constant levels of stress; — —, the characteristic curves.

28 Vol. 277. A,
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actually reach the boundary X = 0. All other characteristics at which § > f., are refracted
so strongly by the reflected a-wave that they never reach X = 0 but, as ¢ — co, asymptote to

X = (1—M)/(MB—1). (7.14)

What happens, of course, is that if 73/7] is large enough to produce characteristics at which
B > fe, the reflected wave is sufficiently strong to soften the material to such an extent that it
‘yields’. Figure 21 depicts the relation between M and (7Ta/Ti)qys the least value of T3/Ti to
produce yield. This relation is obtained by using conditions (7.12) and (7.13) which imply that

Ay = [1 + (A_z[?‘_;)%]—z. (7.15)

( Tn/ ’I,l)crlt
101

(U o

L | 05 | I
—10 -5 01 5 - 10

M —

Ficure 21. The relation between M and the least value of T,/7; that will produce yield at a rigid boundary
during the reflexion of a centred wave.

Note that (7771)y = So(M) —the least value of T77; that causes a shock to form in region II
when the interface is perfectly free. An alternative argument is as follows. Since

eri

{ G in the incident wave,}
C =

7.16
2G  at the interface, (7.16)
only that part of the incident wave in which 0 < Gfey < }, where A(a)) = 0, actually reaches
X=0. In faCt, Acrit - ff(%ﬂ) (717)

If ¢afer > L, part of the reflected wave may also be trapped. For even though F/¢;increases mono-
tonically with ¢ in the range (0, 1) at X = 0, only that part of the reflected wave in which

0 < Fla < 1—cafa

actually traverses the interaction region. This situation is illustrated in figure 20.

7.1. Limiting cases
(1) Hookean material (M — 1—)

As in the case of reflexion from a free boundary, the interaction region is bounded by the
curves (6.22) in the (£, X) plane. Now though, according to equations (7.7) and (7.8), the domi-
nant approximations to 4 and « are

A=1-(1-M)[1+X2—(1-0)?%] and a=1+(1-M)(I-X). (7.18)
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I't follows from equations (6.20) and (7.9) that

c=e=T = —T;In[(1-7)2— X?], (7.19)
1-i+ X
h = =1. .2
and that u Tlln[l—t'—X] (7.20)

Since conditions (6.22) imply that the incident wave is completely reflected from X = 0 when
{ is given by equation (6.26), it follows from equations (7.19) that the traction at the wall after
reflexion is 275 — twice its value in the incident wave.

(ii) Perfectly elastic — perfectly plastic response (M — 1+)

According to figure 21, as M — 1 + the traction at the rigid boundary attains the limit value

7; whenever 1< TTi< 1. (7.21)

Here, to illustrate what happens in this limit we consider the special case when

To/Ti= $+|0(M-1)]. (7.22)

Then, according to equations (6.31) and (6.3), the incident wave is represented by a small angle
fanin which —Xx

l=—"= 1+0[(M-1)%], (7.23)

while the interaction region is confined to a layer where

X=0[(M-1)}, =(M-1)}X say. (7.24)
This latter result follows from the fact that when condition (7.22) holds, equations (6.28) and
(6.29) predict that Ao = 1—4(M—1)}+O[(M—1)] (7.25)

so that, according to conditions (6.3), the back of the centred wave crosses the front of the re-
flected wave when

X=2M-1)+0[(M-1)] and ¢—1=2(M—1)t+0[(M-1)]. (7.26)

The interaction layer (7.24) is divided into three regions. In the first, x — 1 = O[(M —1)] and
A—1=0[(M~-1)]; in the second a—1 = O[(M —1)%] and 4 varies over the full range (1, 0);
in the third «a—1 = O(1) and 4 = O[(M —1)].

In the first region the dominant approximation to « is given by the second of equations (7.18). -
(Note that, now, Xand ¢ are < 0.) However, the dominant approximation to 4 is only given by
the first of equations (7.18) when X = O[(M —1)]. In this subregion it follows from conditions

(6.32) that T—¢—¢=—T[n(M—1)]'In[1 —}(X2—P+28)], (7.27)

and from conditions (7.5), (7.9), (7.18) and (7.27) that

34+ (f—X— 1)2]
= Tl — 1)t | .
u= Ti[ln (M —1)] n[3+<f_ NI xe) (7.28)
When X = O[(M —1)%], according to equations (7.7) and (7.24),
2X _—
A=1-(M-1)}—— (1+X-1). 7.29
(M= 1)} = (14 X1 (7.20)

28-2
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The corresponding variations in 7, ¢ and ¢ follow from equations (6.32): they are

o X
T:ezc—_—fl](%—[ln(M—l)] 1ln[§1+)?2

(1+X~f)]). (7.30)

It follows from equations (7.9) and (7.18) that

14+ X234 (I— X—1)2
=Ti{L{+][In (M-1)]"11 [ - = ]) 7.31
‘ 1(2 > GEETS & (7.31)
In the second region  t—1 = O[(M —1)¥], = (M—1)}% say, (7.32)
and, according to equations (7.7) and (7.8), essentially
1+X2 . i-X
= = hil =14+ (M-1)% = . 7.33
e e * ) 14+ X7 (7.33)

The variations of T, ¢ and ¢ with (X, 7) then follow from equations (2.25) and (2.26), which state
that

T—¢= T1[1 —[In (M= 1)]"'In (%‘g)] (7.34)
while ¢= 7;(1 —[In (M—1)] [2A—%+ln (i_lj“;)]) (7.35)

The variation of « with (X, 7) follows from equations (7.9), (7.33) and (7.34): these yield

e viere ((AERE 11443
u = Ti[In (M —1)] 1n((1+iz)_%+11_ﬁ , (7.36)
where A(X, ) is given by equation (7.33) and
= a—1 i—-X
a= = ==. 7.37
a0V Sy (7.87)
Finally, in the third region equations (7.7) and (7.8) imply that
1+X2
4= (M-1) e (7.38)
t—1
and that a=1+(M-1)} = 7.39
( ) (M—-1)84+(t—1)X (7.89)
It then follows from equations (2.25) and (2.26) that
o (M—1) (1+X2)¥
T_c_Tl[1+2ln(M_1) — (7.40)
I—1
d that = —2T1 M—I%I M-1 —1"“""-_;_—*, 7.41
and tha ¢ = 2RI = Dl (M- ] s (7.41)
while (7.9), (7.39) and (7.40) imply that
u=—2T[In (M—1)]"1{X + (M—1)}[1— (1 4+ X2)3]/(t—1)}. (7.42)

Note that even though equation (7.41) predicts that ¢ is unbounded like [ (M —1)¥1n (M —1)],
since the thickness of the interaction region is only O[(M — 1)#] the material does not undergo
a finite displacement even though 7"~ 7.
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(iii) Rigid—elastic response (M — 0+)

We consider the situation when 7 satisfies condition (6.39). Then, as in the case of reflexion
from a perfectly free interface, it is best to use t* = Mt as the time measure. On this scale the
fronts of the incident and reflected waves are represented by /* = 0 and, no matter how large
T5/T;, the incident wave is always completely reflected from the rigid interface before #* = 1.

According to equations (7.7), (7.8) and (7.11), except when * = O(M) (¢ = O(1)) the
material is in the elastic state with

1— X2 t*(1— X)

A=M14= = a* = Ma = T X (7.43)

and p*=Mp = % (7.44)

In these equations 0 < (o*, B*) < af, (7.45)

where a¥ =2(1+ 4,)7, (7.46)
which is < 1 because 1 < 4, < 00. Also, by condition (6.3),

0< X <1—|0(M)t (7.47)

To determine 4 in terms of 7/7} use the fact, which follows from conditions (2.42) and (2.43),

that _
%. — 14+3M} [hl (g;i i) nzz%], (7.48)

This relation, with 4 given by the first of equations (2.43), determines 7" as an explicit function of
(X, t*). ¢(X, t*) and e(X, t*) can likewise be determined from the facts that

pOAoo 1 1 Z%'l'l)
T ¢ = szln(_%_1 , (7.49)
pody T
and e = —1. 7.50
T T, (7.50)

These relations follow from equations (2.42)-(2.44). Conditions (7.9), (7.43) and (7.49) imply

that
PoAe

foeu = gMiln (-‘g%i%) (7.51)
where M= [1—(1—o*)2]~F = [14+ X (1—*%)][(1 - X2) (1 - (1 —*)%)]% (7.52)
Figure 22 depicts the characteristic net and the trajectories of constant 7"and e when
Ta/T;—1 > |0(1)].
Then o = 1 and the interaction region is the triangular domain bounded by the rays
t*=0, X=0 and *=1-X. (7.53)

Note that the f-characteristics and the curves of constant 7" and ¢ are all centred on the point
(X,8) = (1,0).
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The representations (7.43)—(7.52) are invalid when t* = O(M). Over this period the material
is in a near rigid state. Equations (7.7) and (7.8) imply that

_1-Xz _H(1-X)+X
Conditions (2.45), (2.46) and (7.54) imply that
Podew 2t—1
. _ 1-X? pods L apaf(2t—1

while T= 7}[1 ‘EZ:‘T] and T e=iM [(1 —-Xz) - 1]. (7.56)
u(X,t) then follows from equations (7.9), (7.54) and (7.55), it is given by

pPode 2t—1\%

Boteu = M(7g) X. (7.57)

0 05 X 10

Ficure 22. The reflexion of a centred wave at a rigid interface in a rigid-elastic material when T,/ Ty > 14 |0 (M) 3.
Except when ¥ = O(M) the material is in the elastic state. , The trajectories of constant stress;
— —, the characteristic curves.

(iv) Rigid—plastic response (M — 0 —)
We consider the response of a rigid—plastic material when 7 is close to 71 in the sense (6.59).
Then, the material is in a near plastic state when

t* = — Mt = 0(1). (7.58)
In this state, according to equations (7.7), (7.8) and (7.11)
1-X2 1-X

- M- A * — _ = p*
A= M(1+t*)2—1’ o Mo =t X (7.59)
- - 14+ X
* — = ¥
and pr=—-Mp=t =X’ (7.60)
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T and ¢ can be determined from equations (6.68) and (6.69) with

tané = [%r (7.61)
From equations (6.67), (7.9) and (7.59) it follows that
2 .
u= ;cl(c—co), (7.62)
where tanc, = [(1+ a*)2—1]%. (7.63)
The displacement field corresponding to the velocity field (7.62) is given by
d=x—X= (;)2[—):"7,:—% ( —-M)—%[(l +t*) tan—1 (1 _:_Yt* tanc’) —c'X], (7.64)

where ¢(X, t*) is determined from condition (7.61). In the (¢*, X) plane the interaction region

is bounded by the curves

=0, X=0 and t* i+§= 252, (7.65)

Figure 23 depicts the characteristic curves and the trajectories of constant levels of 7" and ¢
in the limit as 2y —> 0. Then, at all values of #*, the interaction region fills the whole slab.

i

[

}

7 / ,
I
]
]

05 /

—
———

0 05 X 1.0
Ficure 23. Thereflexion of a centred wave at a rigid interface in a rigid-plastic material when T,/ T} = 1—|O(M) |}
When ¢* = O(1) the material is in a near plastic state. , The trajectories of constant stress; ——, the

characteristic curves.

The representations (7.59)—(7.65) are invalid when t* = O(— M), (¢ = O(1)). Over this period
the material is in a near rigid state with

1-Xr (1-X)+X

“ t(1+X)—-X
T 2—1’ T1+X

A X

and J= (7.66)
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¢, A, T and ¢ can be calculated from equations (2.45) and (2.46) with

2t—1\%
Also, from equations (2.45), (2.9), (7.66) and (7.67) it follows that
1\
Oolle, - M(fl—Xlg) X. (7.68)
7 -

The part of the interaction region where (7.66)—(7.68) are valid is bounded by the curves
X=0, and ¢(1-X)=1 for 1<¢<o0. (7.69)
(v) v =38 (M- )

In this limit the representation of the deformation in the interaction region simplifies con-
siderably. For, according to equations (7.7), (7.8) and (7.11)

A=t2 o= iTl-{E( and f = _I_—tTY (7.70)
It follows from equations (6.87)—(6.88) that
%: 1-—-473 &’Tzlg’e=3(t——1) and &%2)6=3(t—%—1-), (7.71)
while by equations (7.9) p";gu = 3X. (7.72)
The front of the reflected wave is 1 )
H(1-X)=1 for 1<t< [1—%]_7‘7, (7.73)
the back of the incident wave is given by the last of equations (7.70) with
B = [2(1 —%)%— 1]_1. (7.74)
The limit stress is attained at the rigid interface i.
TafTi 2 . (7.75)

8. THE INTERACTION OF THE INCIDENT CENTRED WAVE AND THE WAVE
REFLECTED FROM AN INTERFACE WITH A HOOKEAN MATERIAL

In many situations the interface X = 0 separates two elastic materials which have the property
that although the response of the material to the right is grossly nonlinear for the stress level
that occurs, the response of that to the left remains essentially linear. If 77, the traction in the
linear Hookean material, is measured in units of p,42 and if ¢;, is measured in units of 4,, the
equation of state of the Hookean material is

1y, = tgep, (8.1)
- ProAre
Pody
is the impedance of the interface when 7" = 0. When condition (8.1) holds, the interface con-
dition (3.1) states that

where % (in dimensional variables) (8.2)

at X=0, u=11T(c) (8.3)
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so that, by equations (2.2) and (2.4),
G=3c+ T()] and F=434[c—i1T(c)]. (8.4)
The last of these equations, together with conditions (2.3) and (2.5), imply that
y 3 (1—_’51”12) dm
da m*—M )da’
When the expressions (7.1) and (8.5) are substituted in condition (4.12), this yields the first
order equation

(8.5)

da

m(mz——M)a;Z—k(l—Moc) (1+i51m?) =0 (8.6)
for o = &(m). This integrates, subject to the condition that m = 1 when « = 1, to give
1-M m2 — M\ 30+ D
- —m
a=1+ i [1 m (I—M) ] (8.7)
When the expression (8.7) for « is inserted, equations (7.1) determine ¢ = ¢p(m) and 7 = 7(m)

as explicit functions of the characteristic parameter m. F' = F(m) is determined from equation (8.
with ¢ = ¢(m?). The statement (7.5) for m(e) at a rigid interface is obtained from equation (8.
as i, = 00. The variation of # with « at a free interface, which follows from equations (6.5) and
(6.10), is obtained from equations (8.3) and (8.6) in the limit as (¢, 7,¢,4—1) - 0 but

1)
)

m2—1 Moy Y T
gy Ay Ul y 1 T-—-Mu. (8.8)

0!

8.1. Yield at the interface
In general the incident wave will be completely reflected from X = 0 when ¢ attains a value
¢aa which is related to ¢, by the equation
2(/'3, = Caa +i6_1 T(Ca,a,). (8.9)

This result follows from the first of equations (8.4) and the fact that G = ¢, at the back of the
incident wave. Equation (8.9), with ¢aa = c1and T" = Tj, implies that the least value of ¢a/c; that
will cause an ideal material to yield at the interface is

Ca 1 . 7}

Consequently, since ¢afc1 < 1, a sufficient condition that the material shall not yield (no matter

how close 75 is to T;) is that
o < Dfa, =I(M), (<1). (8.11)

The function I,(M) can easily be calculated by using I, (8.49) and (8.59): it is graphed in
figure 24. In this same figure we have also depicted the variations of the critical value of 7,/7;
with M at several values of ¢,. For values of T,/7; greater than this critical value the material will
yield at an interface characterized by the parameter .

8.2. Shock formation
A study of equations (8.6) and (8.9) shows that
at X=0, d4/dt=dm?/d®a <0 for —co<M<oo and 0 <7 < o0 (8.12)

Consequently, in general a material always softens at an interface with a Hookean material

29 Vol. 277. A.
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I,
05+
I I,(M)
02
I
{ L | |
-3 -1 0 . 3
i,=05 10~ : 1,=05
1 1
2
= ) f”z—___
Tl crit )
0.8+
0.6+
1 | 1
=3 1 0 1 3
M~

Ficure 24. The variations with M of the least values of T,/ T that will produce yicld at anintcrface with a Hookean
matcrial during the reflexion of a centred wave. The curves are characterized by ¢, the impedance of the
interface in the reference configuration. Also shown in this figure is the variation of I, with M: if i, < I,(M)
the material can never yicld no matter how close T, is to 7. Note that if 4, < % yield cannot occur for any
material.

during the reflexion of a centred wave. This causes the reflected wave to defocus at the interface.
The onc exception is when the interface is perfectly free (7, = 0): then dA4/d¢ = 0 at X = 0.
However, when the material is ideally soft (M lies outside the range (0,1)) and when 7, < 1
the material may begin to harden away from the interface and the reflected wave may focus to
form a shock. Hardening and shock formation always occur first at the front of the reflected wave.

Figure 25 depicts the relations between M and the lcast value of 75/7; that causes the material
to harden. The curves are drawn for several fixed values of i, lying in the interval [0, 1]. To obtain
this information we have used the fact that conditions (4.8), with ¢ and 7 determined as functions
of m by the procedure outlined in section 8, predict that

dd/dt =0 when 4¥ = M(m?—i,)[m(M—1,). (8.13)
When this statement for 4% is inscrted in equations (4.8) these yield the equations
M —m? . M—m?
Mt=14+m i, ¢(m) and X = zOm(—M:;JqS(m) (8.14)

for the curve in the (4, X) planc that separates the region where the material is softening from the
region whereitis hardening. A careful study of the curves (8.14) indicates that a necessary condition
that they lic in the interaction region is that ¢y < 1 and that M lies outside the range (0, 1).
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Moreover, since (8.14) states that ¢ increases as m decreases when ¢, and M vary over this range,
if the material hardens it does so first at the front of the reflected wave, where
M —i, 1—1,

¢:m=1, tzm and le—MM—ZO

(8.15)

XH’ (Tal T'l)crit
10
/;

r 0.5

M -

Ficure 25. The relation between M and the least value of T,/ 7] that will cause the material to harden during the
reflexion of a centred wave from an interface with a2 Hookean material. The curves are characterized by i,
the impedance of the interface in the reference configuration. Hardening always first occurs at the front of
the reflected waves at X = Xy (M; iy). s (Tl T a3 — = X

‘Yss (Tal 711)01'it

| L l

—5 —3 -1 0
M —

Ficure 26. The relation between M and the least value of T,/7; that will cause a shock to form during the reflex-
ion of a centred wave from an interface with a Hookean material. The curves are parameterized by 7,, the
impedance of the interface in the reference configuration. The shock always forms at the front of the re-
flected wave at X = X, (M: i), ——, (T T i — —> X

29-2
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According to equations (8.13) the corresponding value of

1—i,

A% = MM—iO'

(8.16)

The information contained in figure 25 now follows from the fact that hardening will indeed

occur if T,/T; is large enough for
1—1,

3
ab< Mg

a

M

N

(8.17)

Even when condition (8.17) is satisfied the reflected wave need not always focus rapidly
enough for a shock to form in the interaction region. After a lengthy argument (which will not
be given here) it can be shown that for this to happen

(M —1,)\? 1—45\2, 132
AaSAs—(lﬁio) {1—[1_(M_i0) ul}. (8.18)
The values of T,/7; corresponding to 4, = A are shown in figure 26. A shock forms at the front
of the reflected wave when 73/T;is equal to, or greater than, this critical wave.

8.3. M =

As a simple illustration of the general results established in this section we consider the special
case when M = co. Then, condition (8.7) implies that

o = m~lexp [} (1—m?)], (8.19)
while conditions (7.1), (4.8) and (4.9) imply that
t=¢(m) At and X = @(m)(m—A4?%), (8.20)
where ¢ = am = exp[3ig1(1 —m?)]. (8.21)
When m is eliminated, equations (8.20) yield the implicit equation
m = A+ X[A¥ = [1—2¢,1In (¢4%)]F (8.22)

for the determination of 4(X, ) and m(X, ¢). To determine » use equations (4.13), (6.87), (6.88)
and (8.4): these yield
u = Ti[3(m— A%) +ig* (1 —m3)]. (8.23)

Equation (6.88) implies that 7i/¢c; = §. Consequently, condition (8.11) states that when M = oo
the material can never yield when 7; < 4. In fact, according to equations (8.10), (6.87) and
(6.88) the material will only yield at X = 0 if

To/Ti> 1—1(1—4i1)? for 1 <iy< oo (8.24)

According to equations (6.87), (6.88), (8.15) and (8.16) the material will first start to harden at
X =i,if
To|Ti > 1— (1—1,)3. (8.25)

Once the material starts to harden it will continue to do so along the curve represented by the

relations
m

b= ¢(m) and X = iym~t¢(m), (8.26)
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where ¢(m) is given by equation (8.21). However, the material will only harden rapidly enough

for a shock to form if
ToTi > 1—§(1—1,)3. (8.27)

When condition (8.27) is satisfied, the shock forms at
X=131+i) and t=2(1—g)L (8.28)

Figure 27 illustrates conditions in the interaction region when 7, = 0.1 and when T3/T; is
large enough for a shock to form. The curve along which the material begins to harden is clearly
shown. Note that once it forms at the {ront of the reflected wave it moves towards the interface
X=0.

0 0.5 X 1.0
Ficure 27. The reflexion of a centred wave from an interface with a Hookean material when M = oo and ¢, = 0.1.
The reflected wave at first defocuses and then begins to focus. —- —, The curve separating the region where
the material softens from the region where the material hardens; , the trajectories of constant levels of

stress; — —, the characteristic curves.

9. THE INTERACTION OF THE INCIDENT CENTRED WAVE AND THE WAVE
REFLECTED FROM AN INTERFACE WITH ANY ELASTIC MATERIAL

When the response of the material to the left of the interface is nonlinear the functions ¢ (),
7(a) and F(a) in equations (4.8), (4.9) and (4.13) cannot usually be determined by analytic
means. To compute them it is best to introduce the function

Gla) =G at X=0. (9.1)
In terms of G, equations (2.10) and (8.2) imply that

F(a) =L(G) and m(a) = A G+L(G)]. (9.2)
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Equations (7.1), which are valid at any interface, with m(«) given by (9.2) then determine ¢
and 7 as functions of & and G. All that remains is to determine G(c). To do this insert the expres-
sions (9.2) for 'and m and the expressions (7.1) for ¢ and 7 in the compatibility equation (4.12).
This yields the equation o _ _

MA:[G+ L(G)]do/dG + p(Ma—1) = 0 (9.3)

for G(«). This equation integrates, subject to the condition that G = 0 when a = 1, to give

@ ds
o =M71+(1-M"1)ex (— f 7——~————) 94
( P\ ~), TG+ L] 94
Since G = ¢, at the back of the incident centred wave, if the material does not yield at the inter-
face G varies over the interval (0, ¢,) in equation (9.4). However, if the material yields G varies

over the range (0, Gaa), where Gaa+L(Gaa) = a1 (9.5)

Once G(a) has been determined from condition (9.4) F () and m(a) follow from equations (9.2)
while ¢(a) and 7(a) follow from equations (7.1). The variations of 4 and « in the interaction
region can then be computed from equations (4.8), (4.9) and (4.13).

9.1. The reflected wave

When no shocks form, after traversing the interaction region the reflected wave is a simple
wave in which G = ¢,. To determine the signal carried by this wave first note that condition
(4.14) implies that

¢=catF(a) (9.6)

at the back of the incident centred wave. Then note that equations (4.8), with
A=A[ca+F(a)], =Ag(a) say, (9.7)
yield relations of the form X =Xg(a) and ¢=iz(a) (9.8)

for the trajectory of the back of the incident centred wave. The curve (9.8) separates the inter-
action region from the simple wave region. Since 4 = Ay (a) in the simple wave region, a(X, ¢)
can be computed from the condition that

X —Xp(a) = Ap(e) [t —tp(a)]. (9.9)
If the reflected wave does not focus and form a shock as it traverses the simple wave region its
front reaches X = 1 when ¢ = 24;%. This follows from the fact that the front emerges from the
interaction region when X = 1 — 4% and ¢ = 4;% (see equations (6.3)) and then moves with con-
stant speed 4, towards X = 1.
Once a(X, ) and A(X,?) have been determined from equations (9.7) and (9.9) (X, ) can
be computed from either of the equations
u=co—F(a) = 2c,—7(4). (9.10)
(1) Perfectly free interface
When the interface is perfectly free equations (6.13) express X and ¢ as explicit functions of 4
at the boundary separating the interaction region and the simple wave region. From these equa-
tions it follows that in the simple wave region

X=A41-Y(4) for Ada<4d<1, (9.11)
where Y(A4) = M [A+ (2MAY— A~ M) exp (u[é(4) —ca])]- (9.12)
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When 4(X,t) has been determined from condition (9.11), #(X,¢) can be computed from the
second of equations (9.10).
Since the simple wave relation (9.11) predicts that

DA/Dt = A(Y'(4) —¢)71, (9.13)
the reflected simple wave will focus and form a shock at the least value of ¢ at which Y'(4) —¢ = 0.
When the expression (9.12) for ¥ (4) is examined it turns out that Y’(4) is an increasing function
of A when M lies outside the range (0, 1) and a decreasing function when A lies inside this range.
Consequently, if a shock forms it does so at the front of the wave, where 4 = 4,, when the material
is ideal and at the back of the wave, where 4 = 1, when the material is non-ideal. A careful study
shows that this later possibility does not in fact occur. Consequently, no shocks form in region III
when the material is non-ideal.

By contrast, a shock must always form in an ideal material before the front of the wave reflected
from X = Oreaches X = 1. For, conditions (9.11) and (9.13) predict that DA/D¢is unbounded at
the point (X, ¢,,), where

14} M- 43
=1-24} a =o——=¢
X, =1 2AaM(M_Aa) and 1, 2(M_Aa). (9.14)
The result now follows by noting that, no matter how small 73/7;, X, < 1 or, equivalently,
t, < 2431

S3

(ii) Perfectly rigid interface

In the simple wave which is reflected from a perfectly rigid interface

a=X% (9.15)

t—1
h t—-2:A—§; and X, = —1+M;t 9.16
whnere [ M—Aa, n [ g (3 ( . )

Consequently, the reflected simple wave is also a centred wave. This fact follows immediately if equa-
tions (7.7) and (7.11) are used to determine X and ¢ as functions of 4 along the boundary curve
B = A;% which separates the interaction region from the simple wave region. Note that for very
weak waves, as 4, — 1 the point at which this wave is centred (X, ) - (—1, 0). The variation
of u in this centred wave follows from equations (9.10) and (9.15): these imply that

u= zca—c”()i:f). (9.17)
In equations (9.15) and (9.17)
A(2,) < A< As and 0 <ufea <1 when Ay > Ay,
while 0<A4< 4y and (2—afca) S ufea <1 when Ay < Ay (9.18)

The results presented in this paper were obtained in the course of research sponsored by the
U.S. Army under Contract no. DAAD05-71-C-0389 and monitored by the Ballistics Research
Laboratories, Aberdeen Proving Ground, Maryland.
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